Riemann Surfaces Example Sheet 2

Lent 2023

Please send any comments or corrections to me at hjrw2@cam.ac.uk.

- 1. Recall that an open set $U \subseteq \mathbb{C}$ is a *star domain* if there is $z_0 \in U$ such that, for every $z \in U$, the straight-line segment from z_0 to z is contained in U. Prove that every star domain is simply connected.
- 2. Show that a regular covering map $\pi : \widetilde{X} \to X$ of non-empty, path-connected topological spaces is surjective. Use the monodromy theorem to show that if X is simply connected then π is a homeomorphism.
- 3. Suppose that $f : \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$ is an analytic map of complex tori and π_j denotes the projection map $\mathbb{C} \to \mathbb{C}/\Lambda_j$ for j = 1, 2. Show that there is an analytic map $F : \mathbb{C} \to \mathbb{C}$ such that $\pi_2 \circ F = f \circ \pi_1$.

[Hint: Define F as follows. Choose a point μ in \mathbb{C} such that $\pi_2(\mu) = f\pi_1(0)$. For $z \in \mathbb{C}$, join 0 to z by a path $\gamma : [0,1] \to \mathbb{C}$, and observe that the path $f \circ \pi_1 \circ \gamma$ in \mathbb{C}/Λ_2 has a unique lift to a path $\tilde{\gamma}$ in \mathbb{C} with $\tilde{\gamma}(0) = \mu$. If we define $F(z) = \tilde{\gamma}(1)$, show that F(z) does not depend on the path γ chosen and that F has the required properties.]

- 4. Let f and F be as in Question 3, and suppose that f is a conformal equivalence. Show that $F(z) = \lambda z + \mu$, for some $\lambda \in \mathbb{C}_*$. Hence deduce that two analytic tori \mathbb{C}/Λ_1 and \mathbb{C}/Λ_2 are conformally equivalent if and only if the lattices are related by $\Lambda_2 = \lambda \Lambda_1$ for some $\lambda \in \mathbb{C}_*$.
- 5. Show that two complex tori, $\mathbb{C}/\langle 1, \tau_1 \rangle$ and $\mathbb{C}/\langle 1, \tau_2 \rangle$, are conformally equivalent if and only if

$$\tau_2 = \pm \frac{a\tau_1 + b}{c\tau_1 + d}$$
for some matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$

6. Show that the component of the space of germs over \mathbb{C}_* corresponding to the complex logarithm is analytically isomorphic to the Riemann surface constructed by gluing, and hence also analytically isomorphic to \mathbb{C} . Show that the component of the space of germs over $\mathbb{C} \setminus \{-1, 0, 1\}$ corresponding to the complete analytic function $(z^3 - z)^{1/2}$ is analytically isomorphic to the Riemann surface we constructed by gluing (see Example 6.3 in the printed notes).

- 7. Let R denote the Riemann surface associated with the complete analytic function √1 √z over C_{*}. Show that the projection covering map to C_{*} is surjective. Find analytic continuations along homotopic curves in C_{*}, say from 1/2 to 3/2, which have the same initial germ at 1/2 but different final germs at 3/2. Why is this consistent with the classical monodromy theorem?
- 8. Consider the analytic map $f : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ defined by the polynomial $z^3 3z + 1$; find the ramification points of f and the corresponding ramification indices. What are the branch points?
- 9. Suppose that $f: R \to S$ is an analytic map of compact Riemann surfaces, and let $B \subset S$ denote the set of branch points. Show that the map $f: R \setminus f^{-1}(B) \to S \setminus B$ is a regular covering map. [Hint: Mimic the proof of the valency theorem.] Given a point $P \in S \setminus B$, explain how a closed curve γ in $S \setminus B$ starting and ending at P defines a permutation of the (finite) set $f^{-1}(P)$. Show that the group obtained from all such closed curves is a transitive subgroup of the full symmetric group of the fibre $f^{-1}(P)$. What group is obtained in Question 8?
- 10. Let f(z) = p(z)/q(z) be a rational function on \mathbb{C} , where p, q are coprime polynomials. Show that f defines an analytic map $f : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$, whose degree d is the maximum of the degrees of p and q. If f' denotes the derivative of the function f, show that it defines an analytic map $f' : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$, whose degree satisfies $d-1 \leq \deg f' \leq 2d$. [Hint: Consider the principal parts of f at its poles.] Give examples to demonstrate that the bounds can be achieved.
- 11. If $f: R \to S$ is a non-constant analytic map of compact Riemann surfaces, show that their genera satisfy $g(R) \ge g(S)$. Show that any non-constant analytic map between compact Riemann surfaces of the same genus g > 1 must be an analytic isomorphism. Does this last statement hold when g = 0 or 1?
- 12. Let $\pi : R \to \mathbb{C} \setminus \{1, i, -1, -i\}$ be the Riemann surface associated to the complete analytic function $(z^4 - 1)^{1/4}$. Describe R explicitly by a gluing construction. Assuming the fact that R may be compactified to a compact Riemann surface \overline{R} and π extended to an analytic map $\overline{\pi} : \overline{R} \to \mathbb{C}_{\infty}$, find the genus of \overline{R} .